Математика: деление и умножение в столбик
Содержание:
- Как делить столбиком
- Основные операции в математике
- Умножить столбиком двузначное на двузначное число.
- Умножение суммы на число
- Умножить двузначное на однозначное число столбиком
- Письменное умножение на трехзначное число
- Порядок вычисления простых выражений
- Деление двузначного числа на однозначное
- Решение задач с многозначными числами
- Умножение двух многозначных чисел
- Умножение и деление круглых чисел
- Алгоритм умножения в столбик
- Умножение на однозначное число
Как делить столбиком
Допустим, нам нужно разделить 780 на 12, записываем действие в столбик и приступаем к делению:
Деление столбиком выполняется поэтапно. Первое, что нам требуется сделать, это определить неполное делимое. Смотрим на первую цифру делимого:
это число 7, так как оно меньше делителя, то мы не можем начать деление с него, значит нужно взять ещё одну цифру из делимого, число 78 больше делителя, поэтому мы начинаем деление с него:
В нашем случае число 78 будет неполным делимым, неполным оно называется потому, что является всего лишь частью делимого.
Определив неполное делимое, мы можем узнать сколько цифр будет в частном, для этого нам нужно посчитать, сколько цифр осталось в делимом после неполного делимого, в нашем случае всего одна цифра — 0, это значит, что частное будет состоять из 2 цифр.
Узнав количество цифр, которое должно получиться в частном, на его месте можно поставить точки. Если при завершении деления количество цифр получилось больше или меньше, чем указано точек, значит где-то была допущена ошибка:
Приступаем к делению. Нам нужно определить сколько раз 12 содержится в числе 78. Для этого мы последовательно умножаем делитель на натуральные числа 1, 2, 3, …, пока не получится число максимально близкое к неполному делимому или равное ему, но не превышающее его. Таким образом мы получаем число 6, записываем его под делитель, а из 78 (по правилам вычитания столбиком) вычитаем 72 (12 · 6 = 72). После того, как мы вычли 72 из 78, получился остаток 6:
Обратите внимание, что остаток от деления показывает нам, правильно ли мы подобрали число. Если остаток равен делителю или больше него, то мы не правильно подобрали число и нам нужно взять число побольше
К получившемуся остатку — 6, сносим следующую цифру делимого — 0. В результате, получилось неполное делимое — 60. Определяем, сколько раз 12 содержится в числе 60. Получаем число 5, записываем его в частное после цифры 6, а из 60 вычитаем 60 (12 · 5 = 60). В остатке получился нуль:
Так как в делимом больше не осталось цифр, значит 780 разделилось на 12 нацело. В результате выполнения деления столбиком мы нашли частное — оно записано под делителем:
780 : 12 = 65.
Рассмотрим пример, когда в частном получаются нули. Допустим нам нужно разделить 9027 на 9.
Определяем неполное делимое — это число 9. Записываем в частное 1 и из 9 вычитаем 9. В остатке получился нуль. Обычно, если в промежуточных вычислениях в остатке получается нуль, его не записывают:
Сносим следующую цифру делимого — 0. Вспоминаем, что при делении нуля на любое число будет нуль. Записываем в частное нуль (0 : 9 = 0) и в промежуточных вычислениях из 0 вычитаем 0. Обычно, чтобы не нагромождать промежуточные вычисления, вычисление с нулём не записывают:
Сносим следующую цифру делимого — 2. В промежуточных вычислениях вышло так, что неполное делимое (2) меньше, чем делитель (9). В этом случае в частное записывают нуль и сносят следующую цифру делимого:
Определяем, сколько раз 9 содержится в числе 27. Получаем число 3, записываем его в частное, а из 27 вычитаем 27. В остатке получился нуль:
Так как в делимом больше не осталось цифр, значит число 9027 разделилось на 9 нацело:
9027 : 9 = 1003.
Рассмотрим пример, когда делимое оканчивается нулями. Пусть нам требуется разделить 3000 на 6.
Определяем неполное делимое — это число 30. Записываем в частное 5 и из 30 вычитаем 30. В остатке получился нуль. Как уже было сказано, нуль в остатке в промежуточных вычислениях записывать не обязательно:
Сносим следующую цифру делимого — 0. Так как при делении нуля на любое число будет нуль, записываем в частное нуль и в промежуточных вычислениях из 0 вычитаем 0:
Сносим следующую цифру делимого — 0. Записываем в частное ещё один нуль и в промежуточных вычислениях из 0 вычитаем 0. Так как в промежуточных вычислениях, вычисление с нулём обычно не записывают, то запись можно сократить, оставив только остаток — 0. Нуль в остатке в самом конце вычислений обычно записывают для того, чтобы показать, что деление выполнено нацело:
Так как в делимом больше не осталось цифр, значит 3000 разделилось на 6 нацело:
3000 : 6 = 500.
Основные операции в математике
Основные операции, которые используют в математике — это сложение, вычитание, умножение и деление. Помимо этих операций есть ещё операции отношения, такие как равно (=), больше (>), меньше (<), больше или равно (≥), меньше или равно (≤), не равно (≠).
Операции действия:
- сложение (+)
- вычитание (-)
- умножение (*)
- деление (:)
Операции отношения:
- равно (=)
- больше (>)
- меньше (<)
- больше или равно (≥)
- меньше или равно (≤)
- не равно (≠)
Сложение — операция, которая позволяет объединить два слагаемых.
Запись сложения: 5 + 1 = 6, где 5 и 1 — слагаемые, 6 — сумма.
Вычитание — действие, обратное сложению.
Запись вычитания: 10 — 1 = 9, где 10 — уменьшаемое, 1 — вычитаемое, 9 — разность.
Если разность 9, сложить с вычитаемым 1, то получится уменьшаемое 10. Операция сложения 9 + 1 = 10 является контрольной проверкой вычитания 10 — 1 = 9.
Умножение — арифметическое действие в виде краткой записи суммы одинаковых слагаемых.
- Запись: 3 * 4 = 12, где 3 — множимое, 4 — множитель, 12 — произведение.
- 3 * 4 = 3 + 3 + 3 + 3
В случае, если множимое и множитель поменять ролями, произведение остается одним и тем же. Например: 5 * 2 = 5 + 5 = 10.
Поэтому и множитель, и множимое называют сомножителями.
Деление — арифметическое действие обратное умножению.
Запись: 30 : 6 = 5 или 30/6 = 5, где 30 — делимое, 6 — делитель, 5 — частное.
В этом случае произведение делителя 6 и частного 5, в качестве проверки, дает делимое 30.
Если в результате операции деления, частное является не целым числом, то его можно представить в виде дроби.
Возведение степень — операция умножения числа на самого себя несколько раз.
Основание степени — число, которое повторяется сомножителем определённое количество раз.
Показатель степени — число, которое указывает, сколько раз берется одинаковый множитель.
Степенью называется число, которое получается в результате взаимодействия основания и показателя степени.
- Запись: 34 = 81, где 3 — основание степени, 4 — показатель степени, 81 — степень.
- 3^4 = 3 * 3 * 3 * 3
Вторая степень называется квадратом, третья степень — кубом. Первой степенью числа называют само это число.
Извлечение корня — арифметическое действие, обратное возведению в степень.
- Запись: 4√81 = 3, где 81 — подкоренное число, 4 — показатель корня, 3 — корень.
- З^4 = 81 — возведение числа 3 в четвертую степень дает 81 (проверка извлечения корня).
- 2√16 = 4 — корень второй степени называется — квадратным.
При знаке квадратного корня показатель корня принято опускать: √16 = 4.
3√8 = 2 — корень третьей степени называется — кубическим.
Сложение и вычитание, умножение и деление, возведение в степень и извлечение корня попарно представляют обратные друг другу действия. Далее узнаем порядок выполнения арифметических действий.
Умножить столбиком двузначное на двузначное число.
Для того, чтобы умножить «двузначное на двузначное число столбиком» — 36 на 98, выравниваем два числа по правому краю.
Разбиваем наши умножаемые два числа на два простых умножения 36 на 8, и 36 на 9 — умножаем, как уже было рассказано
№2 на скрине ниже — 36 * 8 = 288.
Берем полученный результат и заносим в умножение №1, чтобы крайняя цифра результата, оказалась под числом, на которое умножали. Под цифрой 8 цифра 8 — выделено красным.
№3 на скрине ниже — 36 * 9 = 324.
Опять берем полученный результат и и заносим в умножение №1, ставим таким образом, чтобы крайняя цифра результат оказалась под цифрой, на которую умножали. 4 под 9 — выделено зеленым.
Далее складываем столбцы: крайнюю 8 синоним под вторую черту без изменений.
Второй столбец справа 4 + 8 = 12, 2 сносим под черту, один в уме.
Третий столбец справа 2 + 2 = 4 и прибавляем 1, который в уме = 5 — сносим под черту.
Четвертый столбец справа, 3 сносим без изменений.
Умножение суммы на число
Задание. Посчитайте и запишите решение на вопрос: сколько квадратов в прямоугольнике?
Вариант 1. Рассуждайте так: в ряду шесть синих квадратов плюс три красных квадрата. Рядов 4. Значит, запишите решение:
Сумма в скобках равна девяти. 9 ∙ 4 = 36. Это табличное умножение.
Вариант 2. Количество квадратов подсчитайте другим способом. Узнайте, сколько синих, потом, сколько красных, полученные результаты сложите.
Таким способом удобно умножать большие величины.
Любое двузначное число легко записать как сумму разрядных слагаемых: круглых десятков и единиц.
Умножайте сначала десятки, потом единицы, произведения складывайте.
Как это сделать, рассмотрите на примере.
Сумму десяти и пяти умножим на шесть.
Это распределительное свойство умножения суммы на число.
Правило умножения суммы на число запишите буквенным выражением.
За внимание награждаю вас оранжевой лентой
Идите по маршруту дальше.
Умножить двузначное на однозначное число столбиком
Как вообще как умножать в столбик!? Начнём с самого простого! Будем умножать двузначное на однозначное число столбиком
Для примера умножим 36 на 8
Выравниваем числа по правому краю, чтобы крайние правые цифры были друг под другом.
Берем первый столбец и вторую цифру второго числа(8) умножаем 6 * 8 = 48.
Результат сносим под черту, чтобы крайняя цифра оказалась под цифрой которую умножали(6), выделено красным.
Берем вторую цифру справа верхнего числа (3) и умножаем на 8, 3 * 8 = 24.
Результат сносим за черту, чтобы крайняя правая цифра результата, оказалась под цифрой, которую умножали(3), выделено зеленым.
Далее нам остается сложить каждый столбик, крайний правый столбец, там находится одна цифра 8, сносим её без изменений, под вторую горизонтальную линию.
Второй столбец справа 4 + 4 = 8, сносим 6 под вторую черту.
Третий столбец справа, там находится 2, сносим двойку без изменений.
Письменное умножение на трехзначное число
Ребята, как вы думаете, чем будет отличаться умножение на трехзначное число от предыдущих примеров? Давайте рассмотрим на конкретном случае. Возьмем возраст гренландского кита – 211, умножим это число на 124.
А теперь попробуйте самостоятельно решить два примера столбиком и проверить полученные записи по образцу.
Рассмотрим умножение на трехзначное число, в записи которого есть 0 (нуль) в середине. Например, 346 ∙ 105. Запишем пример столбиком. Воспользуемся знакомым нам алгоритмом.
В таких случаях на месте второго произведения нули можно не записывать. Но при записи третьего произведения отступить на 2 клетки влево. Вот так:
Выполните самостоятельно подобное умножение и проверьте по образцу.
Порядок вычисления простых выражений
Определение 1
В случае выражений без скобок порядок действий определяется однозначно:
- Все действия выполняются слева направо.
- В первую очередь мы выполняем деление и умножение, во вторую – вычитание и сложение.
Смысл этих правил легко уяснить. Традиционный порядок записи слева направо определяет основную последовательность вычислений, а необходимость сначала умножить или разделить объясняется самой сутью этих операций.
Возьмем для наглядности несколько задач. Мы использовали только самые простые числовые выражения, чтобы все вычисления можно было провести в уме. Так можно быстрее запомнить нужный порядок и быстро проверить результаты.
Пример 1
Условие: вычислите, сколько будет 7−3+6.
Решение
В нашем выражении скобок нет, умножение и деление также отсутствуют, поэтому выполняем все действия в указанном порядке. Сначала вычитаем три из семи, затем прибавляем к остатку шесть и в итоге получаем десять. Вот запись всего решения:
7−3+6=4+6=10
Ответ: 7−3+6=10.
Пример 2
Условие: в каком порядке нужно выполнять вычисления в выражении 62·83?
Решение
Чтобы дать ответ на этот вопрос, перечитаем правило для выражений без скобок, сформулированное нами до этого. У нас здесь есть только умножение и деление, значит, мы сохраняем записанный порядок вычислений и считаем последовательно слева направо.
Ответ: сначала выполняем деление шести на два, результат умножаем на восемь и получившееся в итоге число делим на три.
Пример 3
Условие: подсчитайте, сколько будет 17−5·63−2+42.
Решение
Сначала определим верный порядок действий, поскольку у нас здесь есть все основные виды арифметических операций – сложение, вычитание, умножение, деление. Первым делом нам надо разделить и умножить. Эти действия не имеют приоритета друг перед другом, поэтому выполняем их в написанном порядке справа налево. То есть 5 надо умножить на 6 и получить 30, потом 30 разделить на 3 и получить 10. После этого делим 4 на 2, это 2. Подставим найденные значения в исходное выражение:
17−5·63−2+42=17−10−2+2
Здесь уже нет ни деления, ни умножения, поэтому делаем оставшиеся вычисления по порядку и получаем ответ:
17−10−2+2=7−2+2=5+2=7
Ответ: 17−5·63−2+42=7.
Пока порядок выполнения действий не заучен твердо, можно ставить над знаками арифметических действий цифры, означающие порядок вычисления. Например, для задачи выше мы могли бы записать так:
.
Если у нас есть буквенные выражения, то с ними мы поступаем точно так же: сначала умножаем и делим, затем складываем и вычитаем.
Деление двузначного числа на однозначное
Ребята, вы меня узнали? Люблю наряжаться на маскарад. Вот прицепил такие усы, думал, что буду похож на фокусника. Чудеса начинаются.
Такие задания называют примерами с «усиками». Да, да, но усики носят не люди, кто делит, а сами примеры. Рисовать их нужно простым карандашом, а когда научитесь быстро считать, то просто представляйте в голове.
Устное деление двузначного на однозначное
Задание 1.
Пусть надо решить, сколько будет
К «усикам» запишем такие два слагаемых, которые делятся на 8, а в сумме дают 96.
Самое главное — это не ошибиться в подборе первого «усика». Надо запомнить, что он всегда больше, чем второй. Ищем его, умножая 8 на 10. Если не подойдет, то будем умножать на 20, на 30. Главное, чтобы было круглое число.
Все понятно? Будем тренироваться.
Задание 2.
Задание 3.
Попробуем разделить 90 на два. «Первый усик» явно не 20, тогда второй будет 70. Знаем, что «второй усик» не может быть больше первого.
Вижу, что не 60, потому что 30 разделить на два — это не табличный случай.
Следовательно, 2 ∙ 40 = 80. Значит «первый усик» предположительно 80. «Второй усик» тогда найдем вычитанием: 90 – 80 = 10. Десять разделить на два, это таблица.
Как думаете, вы справитесь с делением? Когда встречаете случаи, где двузначное число делится на однозначное, и примеры не относятся к таблице умножения, то решайте подбором «усиков». Разбивайте делимое на подходящие слагаемые. Их можно записать суммой в скобочках, а при делении использовать правило деления суммы на число.
Решите задачу.
Таня выполнила 96 примеров, а Коля в 4 раза меньше. Сколько примеров решил Коля?
Чтобы ответить на вопрос задачи, надо выполнить действие деления.
96 : 4 =
«Усиками» будут 80 и 16, получается сумма 80 + 16. Значит, каждое из этих слагаемых разделите на 4, а частные сложите.
Ответ: 24
Этап пройден. Вот вам синяя лента в награду.
Деление столбиком двузначное на однозначное
Письменное деление уголком просто невозможно усвоить без блестящего знания таблицы умножения. Это просто трата времени и нервов. В древности в римских школах ее заучивали хором на распев. Знаете ответы на «отлично», тогда переходите на примеры деления в столбик.
Задание 1.
Пусть надо 84 разделить на три. Посмотрите на запись. Такой значок означает деление уголком. Уголок имеет наверху делитель, на который делим. Под чертой — результат, который ищем. Он называется частным.
Нам надо узнать, чему равно частное. Но прежде определим, сколько цифр будет в результате. Это очень важный шаг, поэтому упускать его нельзя. Как мы будем это делать? Посмотрите на первую цифру. Это восьмерка. Восемь больше трех. Значит, она может дать нам полноценную цифру в частном. Ставим точку. После восьмерки еще одна цифра, это значит, что частное — двузначное число. Под чертой в уголке карандашом поставьте вторую точку.
Первое неполное делимое — восьмерка. Начинаем ее делить на три, ищем табличный случай. Легче всего уменьшать 8 на единицу.
8 – 1 = 7. В таблице нет деления семи на три.
Уменьшаем еще на 1.
7 – 1 = 6. Шесть делится на три, получается — по два. Записываем 2 в частное под чертой.
Теперь мы должны понять, сколько не разделили. Ведь разделили всего шесть.
А надо было разделить восемь.
Два осталось неразделенным. Это остаток. Он должен быть меньше делителя.
Давайте проверим: два меньше трех.
Да, действительно. Мы сделали все правильно. Этот шаг очень важен. Не забывайте сравнивать остаток с делителем.
После этого сносим следующую цифру с тем, чтобы получить новое неполное делимое
Обратите внимание: нужно писать каждую цифру в своей клетке. Получается неполное делимое 24
Ответ: 28.
Задание 2.
Решите пример столбиком 96 : 4 =
Проверьте:
Ребята, вы молодцы. Ловите последнюю награду — фиолетовую шелковую полоску.
Ура! Наш математический маршрут пройден. Знания-сокровища из цветных лент превратились в волшебную радугу. Что же у нас вышло, что мы унесем в нашем сундуке. Закончите предложения:
Решение задач с многозначными числами
Работать с многозначными числами устно бывает сложно. Мы привыкли записывать решение в строчку, а вычисления выполнять столбиком на черновике. Сегодня мы научимся правильно оформлять задачу, записывая вычисления столбиком сразу в тетрадь.
Задача
В пекарне «Горячий хлеб» испекли 345 булок ржаного хлеба, 568 булок белого хлеба, 875 сладких булочек. Сколько всего испекут хлебобулочных изделий за месяц (31 день), если ежедневно будут выпекать одинаковое количество?
Сделаем краткую запись задачи.
Вы уже догадались, что каждое число нужно умножить на 31 и полученные произведения сложить.
Запишем все вычисления столбиком. Правильно оформим пояснения. Посмотрите, как выполнена запись в тетради ученика 4 класса.
1 способ.
Ребята, а можно ли решить эту задачу другим способом?
Сначала сложить количество всех хлебобулочных изделий, испеченных за один день, а затем полученное число умножить на 31.
2 способ
Какой способ вам понравился больше? Второй способ можно назвать рациональным, так как он гораздо короче и удобнее.
Задачу о работе мебельной фабрики решите самостоятельно. Сделайте краткую запись. Запишите вычисления столбиком в тетради, правильно оформите пояснения и ответ. Сравните свои записи с образцом.
Задача
На мебельной фабрике изготовили за один день 122 стола и 475 стульев. Сколько изготовят столов и стульев за месяц февраль (28 дней).
Вы хорошо потрудились. Молодцы! Вернемся к животным-долгожителям, с которых мы начали наш урок.
Это интересно! Гренландские киты находятся под угрозой вымирания. Некоторые киты доживают до 200 лет. Ученые установили, что киту-рекордсмену было 211 лет. Тигровый питон – очень крупная неядовитая змея, которая хорошо лазает по деревьям. В неволе питоны живут около 20-25 лет, а в природе доживают до 100 лет. Сухопутные черепахи в среднем живут около 20-50 лет, но есть экземпляры, которые при благоприятных условиях могут достигать возраста 200 лет!
Решите шуточную задачу на смекалку от сухопутной черепахи.
Задача на смекалку
Черепаха в жаркий день решила искупаться. Она сняла свой панцирь и положила на песчаный берег. Думает черепаха: «Сейчас переплыву речку три раза и довольно!». Как вы, ребята, думаете, найдет ли черепаха свой панцирь на берегу и почему?
Ответ: черепаха не обнаружит свой панцирь на берегу, потому что задумала переплыть реку три раза. Значит, она окажется на противоположном берегу.
На уроке мы научились умножать столбиком, решать задачи с многозначными числами, правильно оформлять решение.
До новых встреч! А теперь проверьте свои знания.
Умножение двух многозначных чисел
Если оба множителя — многозначные натуральные числа, нужно действовать следующим образом.
Рассмотрим пример 207 * 8063:
- Сначала запишем наибольшее 8063, затем наименьшее 207. Нужно разместить цифры друг под другом справа налево:
- Последовательно перемножаем значения разрядов. Результатом является неполное произведение.
- Далее перемножаем десятки. Первый множитель умножим на значение разряда десятков второго и т.д. Результат запишем под чертой.
- По аналогии действуем с сотыми. Ноль пропускаем в соответствии с правилом. Так получилось второе неполное произведение:
- Далее складываем два произведения в столбик.
- Получившееся семизначное число — результат умножения исходных натуральных чисел.
Ответ: 8 063 * 207 = 1669041.
Умножение и деление круглых чисел
Обратите внимание: круглым называется число, которое оканчивается нулем — 10, 20, 30, 40, 50, 60, 70, 80, 90, 100. Круглые числа похожи на десятки
Разряд единиц круглых десятков равняется нулю.
Прочитайте таблицу круглых чисел:
Умножение и деление круглого двухзначного числа на однозначное выполняется по определенным правилам. Познакомьтесь с этими правилами.
Деление круглых чисел
Рассмотрим пример внетабличного деления:
В примерах деления круглого числа делим количество десятков и дописываем в ответе нуль.
Делим на 10 — убираем в ответе нуль.
В частном не пишем нули, если делимое, делитель — круглые числа.
Умножение круглых чисел
А знаете ли вы, что за тысячелетия развития математики было придумано много вариантов умножения. Считалось, что для овладения искусством вычисление нужен талант. Итальянский математик 15 века Лука Пачоли приводит 8 способов. Познакомимся с некоторыми из них.
Рассмотрите прием внетабличного умножения.
Двадцать умножить на три равно шестидесяти.
Воспользуемся правилом перестановки множителей, получим пример, который умеем решать.
Прочитайте правило внимательно.
При умножении круглого числа на однозначное, надо умножить десятки на второй множитель, в ответ справа добавить нуль.
Увеличить в десять раз — это значит написать в значение произведения первый множитель и добавить к нему 0 справа.
Произведение семи и десяти равно семидесяти.
Воспользуйтесь правилами математики внетабличного умножения и деления для решения примеров:
Проверьте:
Ошибок нет, молодцы. Ваша первая награда — красная ленточка.
Впереди ждут новые открытия, не отставайте, думайте, решайте.
Алгоритм умножения в столбик
Чтобы понять, как умножать в столбик — рассмотрим действия по шагам:
1. Запишем пример в строку. Выберем и подчеркнем из двух чисел наименьшее, чтобы не забыть при новой записи поставить его вниз.
2. Записываем произведение в виде столбика. Сначала наибольший множитель, затем наименьший, тот что мы подчеркнули ранее. Слева ставим соответствующий знак и проводим черту под которой будем записывать ход решения
Важно обратить внимание разряды, чтобы единицы стояли стоять под единицами, десятки под десятками и т. д
3. Поэтапно производим необходимые действия. Каждую цифру первого множителя нужно умножить на крайнюю цифру второго. Это действие происходит справа налево: единицы, десятки, сотни.
Если результат получится двузначным, под чертой записывается только последняя его цифра. Остальное переносим в следующий разряд путем сложения со значением, полученным при следующем умножении.
4. После умножения на единицу второго множителя с остальными цифрами необходимо провести аналогичные манипуляции. Результаты записывать под чертой, сдвигаясь влево на одну позицию.
5. Складываем то, что нашли и получаем ответ.
Умножение на однозначное число
Для решения задачи по произведению двух натуральных чисел, одно из которых однозначное, а другое — многозначное, нужно использовать способ столбика. Для вычисления воспользуемся последовательностью шагов, которую рассмотрели выше.
Возьмем пример 234 * 2:
1. Запишем первый множитель, а под ним второй. Соответствующие разряды расположены друг под другом. Двойка находится под четверкой.
2. Последовательно умножаем каждое число в первом множителе на второй, начиная с единиц и продвигаясь к десяткам и сотням.
3. Ответ запишем под чертой:
Производить действия необходимо в следующей последовательности: